Advertisements
Advertisements
प्रश्न
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
उत्तर १
tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0
⇒ tan-1 x - tan-1 `(1/"x")` = tan-1 `(1/sqrt(3))` ....[∵ cot-1 "x" = tan-1 `(1/"x"), "x" >0`]
⇒`tan^-1 (("x"-1/"x")/(1+"x". 1/"x")) = tan^-1 (1/sqrt3)`
⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`
⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`
⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`
⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`
⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`
⇒ `"x" = - 1/sqrt3, sqrt3`
∵ x >0, x = `sqrt3`
⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`
⇒ `sec^-1 (2/"x") = sec^-1 (sec π/(6))`
⇒ `sec^-1 (2/"x") = π/6`
उत्तर २
Given,
tan-1 x - cot-1 x = tan-1 `(1/sqrt3),` x > 0
⇒ `tan^-1 x - tan^-1 (1/x) = tan^-1 (1/sqrt3) ....[ ∵ cot^-1 x = tan-1 (1/x), x > 0 ] `
⇒`tan^-1 ((x-1/x)/(1+x. 1/x)) = tan^-1 (1/sqrt3)`
⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`
⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`
⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`
⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`
⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`
⇒ `"x" = - 1/sqrt3, sqrt3`
∵ x >0, x = `sqrt3`
⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`
⇒ `sec^-1 (2/"x") = sec^-1 (sec π/(6))`
⇒ `sec^-1 (2/"x") = π/6`
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"sin"^-1 (1/sqrt2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`