मराठी

If Tan-1 X - Cot-1 X = Tan-1 ( 1 √ 3 ) , X> 0 Then Find the Value of X and Hence Find the Value of Sec-1 ( 2 X ) - Mathematics

Advertisements
Advertisements

प्रश्न

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.

बेरीज

उत्तर १

tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0

⇒ tan-1 x - tan-1 `(1/"x")` = tan-1 `(1/sqrt(3))`   ....[∵ cot-1 "x" = tan-1 `(1/"x"), "x" >0`] 

⇒`tan^-1 (("x"-1/"x")/(1+"x". 1/"x")) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

shaalaa.com

उत्तर २

Given,

tan-1 x - cot-1 x = tan-1 `(1/sqrt3),` x > 0

⇒ `tan^-1 x - tan^-1 (1/x) = tan^-1 (1/sqrt3)   ....[ ∵ cot^-1 x = tan-1 (1/x), x > 0 ] `

⇒`tan^-1 ((x-1/x)/(1+x. 1/x)) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/1

संबंधित प्रश्‍न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"sin"^-1 (1/sqrt2)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×