Advertisements
Advertisements
प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
उत्तर
LHS:
`(tan^(-1)""1/5+tan^(-1)""1/7)+(tan^(-1)""1/3+tan^(-1)""1/8)`
`=tan^(-1)((1/5+1/7)/(1-1/5xx1/7))+tan^(-1)((1/3+1/8)/(1-1/3xx1/8)) [:.tan^(-1)A+tan^(-1)B=tan^(-1)((A+B)/(1-AB))] `
`=tan^(-1)""6/17+tan^(-1)""11/23`
`=tan^(-1)((6/17+11/23)/(1-6/17xx11/23))`
`=tan^(-1)(325/325)`
`=tan^(-1) 1`
`=pi/4`
APPEARS IN
संबंधित प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1x > sin–1x, then ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 (sqrt3)`
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`