मराठी

Prove that: tan^−1 1/5+tan^−1 1/7+tan^−1 1/3+tan^−1 1/8=π/4 - Mathematics

Advertisements
Advertisements

प्रश्न

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

उत्तर

 

LHS:

 `(tan^(-1)""1/5+tan^(-1)""1/7)+(tan^(-1)""1/3+tan^(-1)""1/8)`

`=tan^(-1)((1/5+1/7)/(1-1/5xx1/7))+tan^(-1)((1/3+1/8)/(1-1/3xx1/8)) [:.tan^(-1)A+tan^(-1)B=tan^(-1)((A+B)/(1-AB))] `          

`=tan^(-1)""6/17+tan^(-1)""11/23`

`=tan^(-1)((6/17+11/23)/(1-6/17xx11/23))`

`=tan^(-1)(325/325)`

`=tan^(-1) 1`

`=pi/4`

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

संबंधित प्रश्‍न

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1x > sin–1x, then ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 (sqrt3)`


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×