Advertisements
Advertisements
प्रश्न
If cos–1x > sin–1x, then ______.
पर्याय
`1/sqrt(2) < x ≤ 1`
`0 ≤ x < 1/2`
`-1 ≤ x < 1/2`
x > 0
उत्तर
If cos–1x > sin–1x, then `-1 ≤ x < 1/2`.
Explanation:
Here, given that cos–1x > sin–1x
⇒ `sin[cos^-1x] > x`
⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`
⇒ `sqrt(1 - x^2) > x`
⇒ `x < sqrt(1 - x^2)`
⇒ `x^2 < 1 - x^2`
⇒ `2x^2 < 1`
⇒ `x^2 < 1/2`
⇒ `x < +- 1/sqrt(2)`
We know that – 1 ≤ x ≤ 1
So – 1 ≤ x < `1/sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate tan (tan–1(– 4)).
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If 3 tan–1x + cot–1x = π, then x equals ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"tan"^-1 (sqrt3)`
`tan^-1 1/2 + tan^-1 2/11` is equal to