मराठी

If cos–1x > sin–1x, then ______ - Mathematics

Advertisements
Advertisements

प्रश्न

If cos–1x > sin–1x, then ______.

पर्याय

  • `1/sqrt(2) < x ≤ 1`

  • `0 ≤ x < 1/2`

  • `-1 ≤ x  < 1/2`

  • x > 0

MCQ
रिकाम्या जागा भरा

उत्तर

If cos–1x > sin–1x, then `-1 ≤ x  < 1/2`.

Explanation:

Here, given that cos–1x > sin–1x

⇒ `sin[cos^-1x] > x`

⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`

⇒ `sqrt(1 - x^2) > x`

⇒ `x < sqrt(1 - x^2)`

⇒ `x^2 < 1 - x^2`

⇒ `2x^2 < 1`

⇒ `x^2 < 1/2`

⇒ `x < +- 1/sqrt(2)`

We know that – 1 ≤ x ≤ 1

So – 1 ≤ x < `1/sqrt(2)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 37 | पृष्ठ ३९

संबंधित प्रश्‍न

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate tan (tan–1(– 4)).


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If 3 tan–1x + cot–1x = π, then x equals ______.


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


sin (tan−1 x), where |x| < 1, is equal to:


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"tan"^-1 (sqrt3)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×