Advertisements
Advertisements
प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
उत्तर
`2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)`
`=2tan^(-1)(1/5)+tan^(-1)(sqrt(((5sqrt2)/7)^2-1))+2tan^(-1)(1/8) [`
`=2tan^(-1)(1/5)+tan^(-1)(1/7)+2tan^(-1)(1/8)`
`=2(tan^(-1)(1/5)+tan^(-1)(1/8))+tan^(-1)(1/7)`
`=tan^(-1)((1/5+1/8)/(1-(1/5)xx(1/8)))+tan^(-1)(1/7) [`
`=2 tan^(−1)(13/39)+tan^(−1)(1/7)`
`=2 tan^(−1)(1/3)+tan^(−1)(1/7)`
`= tan^(-1)((2/3)/(1-1/9))+tan^(−1)(1/7) [`
`=tan^(-1)(3/4)+tan^(-1)(1/7)`
`=tan^(-1)((3/4+1/7)/(1-(3/4)xx(1/7)))`
`=tan^(-1)(1)`
`=pi/4`
`=RHS`
Hence proved.
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.