Advertisements
Advertisements
प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
उत्तर
`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))`
`=cot^(-1)((sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))+sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2)))/(sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))-sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2)))) [∵sin 2x=2 sin x cos x and sin^2 x+cos^2 x=1]`
`=cot^(-1)(sqrt((cos(x/2)+sin(x/2))^2+sqrt((cos(x/2)-sin(x/2))^2))/(sqrt((cos(x/2)+sin(x/2))^2)-sqrt((cos(x/2)-sin(x/2))^2)))`
`=cot^(-1) {(|cos(x/2)+sin(x/2)|+|cos(x/2)-sin(x/2)|)/(|cos(x/2)+sin(x/2)|-|cos(x/2)-sin(x/2)|)}`
`=cot^(-1) {((cos(x/2)+sin(x/2))+(cos(x/2)-sin(x/2)))/((cos(x/2)+sin(x/2))-(cos(x/2)-sin(x/2)))} [∵0<x<pi/4⇒cos(x/2)>sin (x/4)]`
`=cot^(-1)((2cos(x/2))/(2sin(x/2)))`
`=cot^(-1)(cotx/2)`
`=x/2`
`=RHS`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin (tan–1 x), | x| < 1 is equal to ______.
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find: ∫ sin x · log cos x dx
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"cos"^-1 (1/2)`
`"sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0