Advertisements
Advertisements
प्रश्न
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
उत्तर
`sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
x = `sin^-1 3/5`
son x = `3/5`
cos x = `4/5`
y = `cos^-1 2/13`
cos y = `12/13`
sin y = `5/13`
sin x = `3/5 = "opp"/"Hyp"`
Adj = `sqrt(5^2 - 3^2)`
= `sqrt(25 - 9)`
= `sqrt(16)`
= 4
cos y = `12/13 = "Adj"/"Hyp"`
Opp = `sqrt(13^2 - 12^2)`
= `sqrt(169 - 144)`
= `sqrt(25)`
= 5
`sin^-1 (3/5) - cos^-1 (12/13) = 3/5(12/13) - 4/5(5/13)`
`sin(x - y) = sinx cosy - cosx siny`
= `36/65 - 20/65`
= `sin(x - y) = 16/65`
`(x - y) = sin^-1(16/65)`
APPEARS IN
संबंधित प्रश्न
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.