Advertisements
Advertisements
प्रश्न
Prove that cot–17 + cot–18 + cot–118 = cot–13
उत्तर
We have cot–17 + cot–18 + cot–118
= `tan^-1 1/7 + tan^-1 1/8 + tan^-1 1/18` ......(since `cos^-1x = tan^-1 1/x`, if x > 0)
= `tan^-1 ((1/7 + 1/8)/(1 - 1/7 xx 1/8)) + tan^-1 1/18` ......(since x . y = `1/7 1/8 < 1`)
= `tan^-1 3/11 + tan^-1 1/18`
= `tan^-1((3/11 + 1/18)/(1 - 3/11 xx 1/18))` .....(since xy < 1)
= `tan^-1 65/195`
= `tan^-1 1/3`
= cot–13
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.