Advertisements
Advertisements
प्रश्न
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
उत्तर
`sin(sin^(-1) 1/5 + cos^(-1) x ) = 1`
`=> sin (sin^(-1) 1/5) cos(cos^(-1)x) + cos(sin^(-1) 1/5) sin(cos^(-1) x) = 1`
`[sin(A+B) = sin A cosB + cosA sin B]`
`=> 1/5 xx x + cos(sin^-1 1/5) sin(cos^(-1) x) = 1 `
`=> x/5 + cos(sin^(-1) 1/5) sin (cos^(-1) x) = 1` (1)
Now let `sin^(-1) 1/5 = y`
Then, `siny = 1/5 => cos y = sqrt(1 - (1/5)^2) = (2sqrt6)/5 => y = cos^(-1) ((2sqrt6)/5)`
`:. sin^(-1) 1/5 = cos^(-1) ((2sqrt6)/5) ` ...(2)
Let `cos^(-1) x = z`
Then `cos z = x => sin z = sqrt(1-x^2) => z = sin^(-1) (sqrt(1-x^2))`
`:. cos^(-1) x = sin^(-1) (sqrt(1-x^2))`
From 1, 2 and 3 we have
`x/5 + cos(cos^(-1) (2sqrt6)/5). sin(sin^(-1)sqrt(1- x^2)) = 1`
`=> x/5 + (2sqrt6)/5. sqrt(1 - x^2) = 1`
`=> x + 2sqrt6sqrt(1-x^2) = 5`
`= 2sqrt6sqrt(1-x^2) = 5 - x`
On squaring both sides, we get:
`(4)(6)(1-x^2) = 25 + x^2 - 10x`
`=> 24 - 24x^2 = 25 + x^2 - 10x`
`=> 25x^2 - 10x + 1 = 0`
`=> (5x - 1)^2 = 0`
=> (5x -1) = 0
`=> x = 1/5`
Hence, the value of x is `1/5`
संबंधित प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The minimum value of sinx - cosx is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"sin"^-1 (1/sqrt2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠DAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`