हिंदी

If `Sin(Sin^(-1) 1/5 + Cos^(-1) X) = 1` Then Find the Value of X - Mathematics

Advertisements
Advertisements

प्रश्न

if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x

उत्तर

`sin(sin^(-1)  1/5  + cos^(-1) x ) = 1`

`=> sin (sin^(-1)  1/5) cos(cos^(-1)x) + cos(sin^(-1)  1/5) sin(cos^(-1) x) = 1`

`[sin(A+B) = sin A cosB + cosA sin B]`

`=> 1/5 xx x + cos(sin^-1  1/5) sin(cos^(-1) x)  = 1 `

`=> x/5 + cos(sin^(-1)  1/5) sin (cos^(-1) x) = 1`     (1)

Now let `sin^(-1)  1/5 = y`

Then, `siny = 1/5  => cos y = sqrt(1 - (1/5)^2) = (2sqrt6)/5 => y = cos^(-1) ((2sqrt6)/5)`

`:. sin^(-1)  1/5 = cos^(-1)  ((2sqrt6)/5) `  ...(2)

Let `cos^(-1) x = z`

Then `cos z = x => sin z = sqrt(1-x^2) => z = sin^(-1) (sqrt(1-x^2))`

`:. cos^(-1) x = sin^(-1) (sqrt(1-x^2))`

From 1, 2 and 3 we have

`x/5 + cos(cos^(-1) (2sqrt6)/5). sin(sin^(-1)sqrt(1- x^2)) = 1`

`=>  x/5  + (2sqrt6)/5. sqrt(1 - x^2) = 1`

`=> x + 2sqrt6sqrt(1-x^2) = 5`

`= 2sqrt6sqrt(1-x^2) = 5 - x`

On squaring both sides, we get:

`(4)(6)(1-x^2) = 25 + x^2 - 10x`

`=> 24 - 24x^2 = 25 + x^2 - 10x`

`=> 25x^2 - 10x + 1 = 0`

`=> (5x - 1)^2 = 0`

=> (5x -1) = 0

`=> x = 1/5`

Hence, the value of x is `1/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 14 | पृष्ठ ४८

संबंधित प्रश्न

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Evaluate tan (tan–1(– 4)).


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"cos"^-1 (1/2)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠CAB = ________.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×