Advertisements
Advertisements
प्रश्न
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
विकल्प
`2 + sqrt(5)`
`sqrt(5) - 2`
`(sqrt(5) + 2)/2`
`5 + sqrt(2)`
उत्तर
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is `sqrt(5) - 2`.
Explanation:
We have, `tan (1/2 cos^-1 2/sqrt(5))`
Let θ = `1/2 cos^-1 2/sqrt(5)`
⇒ 2θ = `cos^-1 2/sqrt(5)`
⇒ cos 2θ = `2/sqrt(5)`
⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)` ......`[because cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`
⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`
⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`
⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`
⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))`
⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`
⇒ tan2θ = `+- (sqrt(5) - 2)`
⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "is not required"]`
APPEARS IN
संबंधित प्रश्न
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
The minimum value of sinx - cosx is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`