Advertisements
Advertisements
प्रश्न
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
उत्तर
`tan^-1x + tan^-1y = tan^-1 ((x + y)/(1 - xy))`
= `tan^-1 ("A")`
Here A = `(x + y)/(1 - xy)`
So L.H.S: `tan^-1x + tan^-1y + tan^-1z = tan^-1 ("A") + tan^-1z`
`tan^-1 (("A" + z)/(1 - "A"z)) = tan^-1 [((x + y)/(1 - xy + z))/(1 - (x + y)/(1 - xy) (z))]`
= `tan^-1 [((x + y + z(1 - xy))/(1 - xy))/((1 - xy - (x + y)z)/(1 - xy))]`
= `tan^-1 [(x + y + z - xyz)/(1 - xy - xz - yz)]`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The maximum value of sinx + cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
sin (tan−1 x), where |x| < 1, is equal to:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"sin"^-1 ((-1)/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`