Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
विकल्प
tan–1x
sin–1x
0
π
उत्तर
0
APPEARS IN
संबंधित प्रश्न
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to