Advertisements
Advertisements
प्रश्न
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
उत्तर
We have
α=90°
β=60°
γ=θ
Since cos2α+cos2β+cos2γ=1,
`cos^2(90°)+cos^2(60°)+cos^2θ=1 `
`0^2+(1/2)^2+cos^2θ=1`
`cos^2θ=1−1/4=3/4`
`cosθ=sqrt3/2 (θ is acute.)`
`∴ θ=30°`
APPEARS IN
संबंधित प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
sin (tan–1 x), | x| < 1 is equal to ______.
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.