English

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ. - Mathematics

Advertisements
Advertisements

Question

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.

Solution

We have

α=90° 

β=60°

γ=θ

Since cos2α+cos2β+cos2γ=1,


`cos^2(90°)+cos^2(60°)+cos^2θ=1  `

`0^2+(1/2)^2+cos^2θ=1`

`cos^2θ=1−1/4=3/4`

`cosθ=sqrt3/2                    (θ is acute.)`

`∴ θ=30°`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


sin (tan–1 x), | x| < 1 is equal to ______.


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×