Advertisements
Advertisements
Question
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Solution
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
`2tan^-1x = tan^-1 [(2x)/(1 - x^2)]`
⇒ `2tan^-1 (cos x) = tan^-1 [(2cosx)/(1 - cos^2x)]`
`1tan^-1 (cosx) = tan^-1[(2cosx)/(sin^2x)]`
Now, `tan^-1 (2 "cosec" x) = tan^-1 [(2cosx)/(sin^2x)]`
⇒ `2 "cosec" x = (2cosx)/(sin^2x)`
`1/sinx = cosx/sinx`
sin2x = sin x cos x
⇒ sin x cos x – sin2x = 0
⇒ sin x(cos x – sin x) = 0
sin x = 0 or cos x – sin x = 0
⇒ x = nπ, n ∈ z, or cos x = sin x
tan x = 1 = `tan pi/4`
⇒ x = `"n"pi + pi/4`, n ∈ z
APPEARS IN
RELATED QUESTIONS
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The minimum value of sinx - cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
Find the value of `sin^-1 [sin((13π)/7)]`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`