Advertisements
Advertisements
Question
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Solution
Consider the left hand side
L.H.S = `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))`
We know that,
`tan^(-1)(A)-tan^(-1)(B)= tan^(-1)((A-B)/(1+AB))`
Thus, L.H.S = `tan^(-1)(((6x-8x^3)/(1-12x^2)-(4x)/(1-4x^2))/(1+((6x-8x^3)/(1-12x^2))((4x)/(1-4x^2))))`
`=tan^(-1)(((6x-8x^3)(1-4x^2)-4x(1-12x^2))/(((1-12x^2)(1-4x^2))/(1+(4x(6x-8x^3))/((1-12x^2)(1-4x^2)))))`
`=tan^(-1)((((6x-8x^3)(1-4x^2)-4x(1-12x^2))/((1-12x^2)(1-4x^2)))/(((1-12x^2)(1-4x^2)+4x(6x-8x^3))/((1-12x^2)(1-4x^2))))`
`=tan^(-1)(((6x-8x^3)(1-4x^2)-4x(1-12x^2))/((1-12x^2)(1-4x^2)+4x(6x-8x^3)))`
`=tan^(-1)((6x-24x^3-8x^3+32x^5-4x+48x^3)/(1-4x^2-12x^2+48x^4+24x^2-32x^4))`
`=tan^(-1)((32x^5+16x^3+2x)/(16x^4+8x^2+1))`
`=tan^(-1)((2x(16x^4+8x^2+1))/(16x^4+8x^2+1))`
= tan-12x
Thus, L.H.S=R.H.S
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate tan (tan–1(– 4)).
Prove that cot–17 + cot–18 + cot–118 = cot–13
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If 3 tan–1x + cot–1x = π, then x equals ______.
If cos–1x > sin–1x, then ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 (1/sqrt2)`
`tan^-1 1/2 + tan^-1 2/11` is equal to
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`