Advertisements
Advertisements
Question
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Solution
Given: `sin (sin^(−1)(1/5)+cos^(−1) x)=1`
` (sin^(−1)(1/5)+cos^(−1) x)=sin^(-1)1`
` (sin^(−1)(1/5)+cos^(−1) x)=pi/2`
We know that
`sin^(−1)(1/5)+cos^(−1) x=pi/2`
Now, from equations (1) and (2), we have:
`sin^(−1)(1/5)-sin^(−1) x=0`
`sin^(−1)(1/5)=sin^(−1) x`
`x=sin(sin^(-1)(1/5))`
`x=1/5`
the value of x is `1/5`
RELATED QUESTIONS
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that cot–17 + cot–18 + cot–118 = cot–13
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
If cos–1x > sin–1x, then ______.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.