English

If sin (sin^(−1)(1/5)+cos^(−1) x)=1, then find the value of x. - Mathematics

Advertisements
Advertisements

Question

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Solution

Given:  `sin (sin^(−1)(1/5)+cos^(−1) x)=1`

 ` (sin^(−1)(1/5)+cos^(−1) x)=sin^(-1)1`

  ` (sin^(−1)(1/5)+cos^(−1) x)=pi/2`

We know that

`sin^(−1)(1/5)+cos^(−1) x=pi/2`

Now, from equations (1) and (2), we have:

`sin^(−1)(1/5)-sin^(−1) x=0`

`sin^(−1)(1/5)=sin^(−1) x`

`x=sin(sin^(-1)(1/5))`

`x=1/5`

the value of x is `1/5`

 

 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 1

RELATED QUESTIONS

Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Prove that cot–17 + cot–18 + cot–118 = cot–13


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


If cos–1x > sin–1x, then ______.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×