English

If α ≤ 2 sin–1x + cos–1x ≤ β, then ______. - Mathematics

Advertisements
Advertisements

Question

If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.

Options

  • α = `(-pi)/2`, β = `pi/2`

  • α = β = π

  • α = `(-pi)/2`, β = `(3pi)/2`

  • α = 0, β = 2π

MCQ
Fill in the Blanks

Solution

If α ≤ 2 sin–1x + cos–1x ≤ β, then α = β = π.

Explanation:

We have `(-pi)/2 ≤ sin^-1x ≤ pi/2`

⇒ `(-pi)/2 + pi/2 ≤ sin^-1x + pi/2 ≤ pi/2 + pi/2`

⇒ 0 ≤ sin–1x + (sin–1x + cos–1x) ≤ π

⇒ 0 ≤ 2sin–1x + cos–1x ≤ π

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Solved Examples [Page 34]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Solved Examples | Q 40 | Page 34

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Prove that cot–17 + cot–18 + cot–118 = cot–13


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 (1/2)`


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×