Advertisements
Advertisements
Question
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Options
α = `(-pi)/2`, β = `pi/2`
α = β = π
α = `(-pi)/2`, β = `(3pi)/2`
α = 0, β = 2π
Solution
If α ≤ 2 sin–1x + cos–1x ≤ β, then α = β = π.
Explanation:
We have `(-pi)/2 ≤ sin^-1x ≤ pi/2`
⇒ `(-pi)/2 + pi/2 ≤ sin^-1x + pi/2 ≤ pi/2 + pi/2`
⇒ 0 ≤ sin–1x + (sin–1x + cos–1x) ≤ π
⇒ 0 ≤ 2sin–1x + cos–1x ≤ π
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Prove that cot–17 + cot–18 + cot–118 = cot–13
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 (1/2)`
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.