English

The value of cosec [sin-1(-12)]-sec[cos-1(-12)] is equal to ______. - Mathematics

Advertisements
Advertisements

Question

The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.

Options

  • –4

  • 0

  • –1

  • 4

MCQ
Fill in the Blanks

Solution

The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to 0.

Explanation:

`"cosec" [sin^-1(-1/2)] - sec [cos^-1((-1)/2)]`

= `"cosec" [-sin^-1(1/2)] - sec [π - cos^-1((-1)/2)]`

= `"cosec" [- π/6] - sec [π - π/3]`

= `-"cosec" [π/6] - sec [(2π)/3]`

= – cosec 30° – sec 120°

= – cosec 30° – sec [(90° + 30°)]

= – 2 – [– cosec 30°]

= – 2 + cosec 30°

= – 2 + 2

= 0

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Official

RELATED QUESTIONS

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


sin (tan–1 x), | x| < 1 is equal to ______.


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


The maximum value of sinx + cosx is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"sin"^-1 (1/sqrt2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×