Advertisements
Advertisements
Question
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
Solution
Given, sin–1x + sin–1y + sin–1z = π
`\implies` sin–1x + sin–1y = π – sin–1z
`\implies sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)] = (pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = sin(pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = z`
`\implies xsqrt(1 - y^2) = z - ysqrt(1 - x^2)`
Now squaring on both sides, we get,
`(xsqrt(1 - y^2))^2 = (z - ysqrt(1 - x^2))^2`
`\implies x^2(1 - y^2) = (z^2 + y^2(1 - x^2) - 2zy sqrt(1 - x^2))`
`\implies x^2 - x^2y^2 = z^2 + y^2 - x^2y^2 - 2yz sqrt(1 - x^2)`
`\implies x^2 - y^2 - z^2 + 2yz sqrt(1 - x^2)` = 0
Hence proved
APPEARS IN
RELATED QUESTIONS
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1x > sin–1x, then ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.