English

Evaluate: ∫x2cosx dx - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`int x^2 cos x  dx`

Sum

Solution

Let I = `int x^2 cos x  dx`

On applying integration by parts

I = `x^2 int cos x  dx - int{d/dx (x^2) int cosx.dx}dx`

I = `x^2 sinx - int 2x sinx  dx`

Again on applying integration by parts

= x2 sin x – 2[– x cos x – ∫ – cos x dx]

= x2 sin x – 2[– x cos x + sin x + c]

= x2 sin x + 2x cos x – 2 sin x + c

= (x2 – 2) sin x + 2x cos x + c

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Official

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in x sec2 x.


Integrate the function in x (log x)2.


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


`int 1/sqrt(2x^2 - 5)  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


Evaluate:

`int1/(x^2 + 25)dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×