Advertisements
Advertisements
Question
Evaluate:
`int x^2 cos x dx`
Solution
Let I = `int x^2 cos x dx`
On applying integration by parts
I = `x^2 int cos x dx - int{d/dx (x^2) int cosx.dx}dx`
I = `x^2 sinx - int 2x sinx dx`
Again on applying integration by parts
= x2 sin x – 2[– x cos x – ∫ – cos x dx]
= x2 sin x – 2[– x cos x + sin x + c]
= x2 sin x + 2x cos x – 2 sin x + c
= (x2 – 2) sin x + 2x cos x + c
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin 3x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in x sec2 x.
Integrate the function in x (log x)2.
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int1/(x^2 + 25)dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.