Advertisements
Advertisements
Question
Integrate the function in x log 2x.
Solution
Let `I = int x log 2x dx`
`= (log 2x) * x^2/2 - int d/dx (log 2x) (x^2)/2 dx`
`= log (2x)* x^2/2 - int 2/(2x) (x^2/2) dx + C`
`= x^2/2 log (2x) - 1/2 int x dx + C`
`= x^2/2 log (2x) - 1/2 * x^2/2 + C`
`= x^2/2 log (2x) - x^2/4 + C`
APPEARS IN
RELATED QUESTIONS
Integrate the function in ex (sinx + cosx).
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate: ∫ (log x)2 dx
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`intcos^-1(sqrt(x))dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`