Advertisements
Advertisements
Question
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Solution
Let I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Put x = sin θ
⇒ dx = cos θ dθ
I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`
= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`
= `int (theta * cos theta)/(cos^3 theta) "d"theta`
= `int theta/(cos^2 theta) "d"theta`
= `int theta_"I" sec_"II"^2theta "d"theta`
=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta` .....`[because int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v" "dv")"dv" + "C"]`
= `theta * tan theta - int 1 * tan theta "d"theta`
= `theta * tan theta - log sec theta + "C"`
= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"` ......`[("When" x = sin theta),(therefore tan theta = x/sqrt(1 - x^2) "and" sec theta = sqrt(1 - x^2))]`
Hence, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin 3x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Find :
`∫(log x)^2 dx`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int(x + 1/x)^3 dx` = ______.
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int(logx)^2dx` equals ______.
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`