Advertisements
Advertisements
Question
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Solution
Let I = `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Let `(2x + 1)/((x + 1)(x - 2)) = "A"/(x + 1) + "B"/(x - 2)`
∴ 2x + 1 = A(x – 2) + B(x + 1) ......(i)
Putting x = – 1 in (i), we get
2(– 1) + 1 = A(– 1 – 2) + B(0)
∴ – 1 = – 3A
∴ A = `1/3`
Putting x = 2 in (i), we get
2(2) + 1 = A(0) + B(2 + 1)
∴ 5 = 3B
∴ B = `5/3`
∴ `(2x + 1)/((x + 1)(x - 2)) = ((1/3))/(x + 1) + ((5/3))/(x - 2)`
∴ I = `int(((1/3))/(x + 1) + ((5/3))/(x - 2)) "d"x`
= `1/3 int 1/(x + 1) "d"x + 5/3 int 1/(x - 2) "d"x`
∴ I = `1/3 log|x + 1| + 5/3 log|x - 2| + "c"`
RELATED QUESTIONS
Integrate the function in x2 log x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`int1/(x+sqrt(x)) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`intx^3 e^(x^2)dx`