Advertisements
Advertisements
Question
Evaluate `int x log x "d"x`
Solution
Let I = `int x* log x "d"x`
= `log x int x"d"x - int["d"/("d"x) (log x) int x"d"x] "d"x`
= `log x* x^2/2 - int[1/x xx x^2/2] "d"x`
= `x^2/2 log x - 1/2 int x "d"x`
= `x^2/2 log x - 1/2* x^2/2 + "c"`
∴ I = `x^2/2 log x - x^2/4 + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int 1/(x(x^3 - 1)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sin(logx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`