Advertisements
Advertisements
Question
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Solution
`1/3`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int x^3tan^(-1)x "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`