English

Integrate the following w.r.t.x : x+5x3+3x2-x-3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`

Sum

Solution

Let I = `int (x + 5)/(x^3 + 3x^2 - x - 3)*dx`

= `int (x + 5)/(x^2(x + 3) - (x + 3))*dx`

= `int (x + 5)/((x + 3)(x^2 - 1)`

= `int (x + 5)/((x + 3)(x - 1)(x + 1))*dx`

∴ x2 + 2 = A(x + 2)(x + 3) + B(x – 1)(x + 3) + C(x – 1)(x + 2)
Put x – 1 = 0, i.e. x = 1, we get
1 + 2 = A(3)(4) + B(0)(4) + C(0)(3)

∴ 3 = 12A

∴ A = `(1)/(4)` 
Put x + 2 = 0, i.e. x = – 2, we get
4 + 2 = A(0)(1) + B(– 3)(1) + C(– 3)(0)
∴ 6 = – 3B
∴ B = – 2
Put x + 3 = 0, i.e. x = – 3we get
9 + 2 = A(– 1)(0) + B(– 4)(0) + C(– 4)(– 1)
∴ 11 = 4C

∴ C = `(11)/(4)`

∴ `(x^2 + 2)/((x - 1)(x + 2)(x + 3)) = ((1/4))/(x - 1) + (-2)/(x + 1) + ((11/4))/(x + 3)`

∴ I = `int [((1/4))/(x - 1) + (-2)/(x + 1) + ((11/4))/(x + 3)].dx`

= `(1)/(4) int (1)/(x - 1).dx - 2 int(1)/(x + 1).dx + (11)/(4) int (1)/(x + 3).dx`

`(3)/(4)log|x - 1| - log|x + 1| + (1)/(4)log|x + 3| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.17 | Page 150

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


`int (xdx)/((x - 1)(x - 2))` equals:


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int xcos^3x  "d"x`


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×