Advertisements
Advertisements
Question
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Solution
Let I = `int "e"^(-3x) cos^3x "d"x`
= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`
= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`
= `1/4 ("I"_1 + "I"_2)`
I1 = `int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x "d"x) "d"x`
= `"e"^(-3x) sin (3x)/3- int - 3"e"^(-3x) sin (3x)/3 "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) sin 3x "d"x`
= `"e"^(-3x) sin (3x)/3 + "e"^(-3x) cos (3x)/3 - int (("e"^(-3x))"'" int sin 3 x "d"x)"d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - int "e"^(-3x) cos 3x "d"x`
= `"e"^(-3x) sin (3x)/3 - "e"^(-3x) cos (3x)/3 - "I"_1`
⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`
⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`
Similarly I2 = `int "e"^(-3x) cos x"d"x`
= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`
⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int 1/(4x^2 - 20x + 17) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.