Advertisements
Advertisements
Question
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Solution
Let I = `int (2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]]*dx`
Put log x = t
∴ `(1)/x*dx` = dt
∴ I = `int (2t + 3)/((3t + 2)(t^2 + 1))*dt`
Let `(2t + 3)/((3t + 2)(t^2 + 1)) = "A"/(3t + 2) + "Bt + C"/(t^2 + 1)`
∴ 2t + 3 = A(t2 + 1) + (Bt + C)(3t + 2)
Put 3t + 2 = 0 i,e, t = `-(2)/(3)`, we get
`2((-2)/3) + 3 = "A"(4/9 + 1) + ((-2)/3 "B" + "C")(0)`
∴ `(5)/(3) = "A"(13/9)`
∴ A = `(15)/(13)`
Put t = 0, we get
3 = A(1) + C(2) = `(15)/(13) + 2"C"`
∴ 2C = `3 - (15)/(13) = (24)/(13)`
∴ C = `(12)/(13)`
Comparing coefficient of t2 on both the sides, we get
0 = A + 3B
∴ B = `- "A"/(3) = - (5)/(13)`
∴ `(2t + 3)/((3t + 2)(t^2 + 1)) = ((15/13))/(3t + 2) + ((-5/13t + 2/13))/(t^2 + 1)`
∴ I = `int [((15/13))/(3t + 2) + ((-5/13t + 12/3))/(t^2 + 1)]*dt`
= `(15)/(13) int 1/(3t + 2)*dt - (5)/(26) int (2t)/(t*^2 + 1)*dt + (12)/(13) int 1/(t^2 + 1)*dt`
= `(15)/(13)*(1)/(3)log|3t + 2| - (5)/(26)log|t^2 + 1| + (12)/(13)tan^-1 (t) + c`
...`[because d/dt (t^2 + 1) = 2t and int (f'(x))/f(x)dt = log|f(t)| + c]`
= `(5)/(13)log|3logx + 2| - (5)/(26)log|(logx)^2 + 1| + (12)/(13)tan^-1(logx) + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`