Advertisements
Advertisements
Question
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Solution
Let `I = int 1/ (e^x - 1) dx`
Put ex = t
⇒ ex dx = dt
⇒ `dx = dt/t`
∴ `I = int dt/ (t (t - 1))`
Let `1/ (t (t - 1)) = A/t + B/ (t - 1)`
⇒ 1 = A (t - 1) + Bt .....(i)
Putting t = 1 in (i), we get
B = 1
Putting t = 0 in (i), we get
1 = A (0 - 1) + B (0)
⇒ A = -1
∴ `1/ (t (t - 1)) = (-1)/t + 1/ (t - 1)`
∴ `I = int (-1/t + 1/ (t - 1)) dt`
= - log |t| + log |t - 1| + C
= - log |ex| + log |ex - 1| + C
`= log ((e^x - 1)/e^x) +C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int 1/(x(x^3 - 1)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int xcos^3x "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Find: `int x^4/((x - 1)(x^2 + 1))dx`.