English

Find Integral(E^X Dx)By((E^X - 1)Square2 (Ex + 2))` - Mathematics

Advertisements
Advertisements

Question

Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`

Solution

`int(e^x dx)/((e^x - 1)^2 (e^x + 2))`

Putting ex = t and exdx = dt, we get

`int(e^x dx)/((e^x - 1)^2 (e^x + 2)) = int (dt)/((t-1)^2(t+2))`

Using partial fraction, we have

`1/((t-1)^2 (t + 1)) = A/(t-1)^2 +  B/(t -1) + C/(t +2)`

⇒ 1 = A(t+2) + B(t−1)(t+2) + C(t−1)2 .....(1)

Putting t = 1 in (1), we get

`A = 1/3`

Putting t = −2 in (1), we get

C = `1/9`

Comparing the coefficients of t2 on both sides of (1), we get

0

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 3

RELATED QUESTIONS

Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int sqrt(4^x(4^x + 4))  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×