English

∫x(x-1)2(x+2)dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int x/((x - 1)^2 (x + 2)) "d"x`

Sum

Solution

Let I = `int x/((x - 1)^2 (x + 2)) "d"x`

Let `x/((x - 1)^2 (x + 2)) = "A"/(x - 1) + "B"/(x - 1)^2 + "C"/((x + 2))`

∴ x = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)2    ......(i)

Putting x = 1 in (i), we get

1 = A(0)(3) + B(3) + C(0)2

∴ 1 = 3B

∴ B = `1/3`

Putting x =  2 in (i), we get

– 2 = A(– 3)(0) + B(0) + C(9)

∴ – 2 = 9C

∴ C = `-2/9`

Putting x = – 1 in (i), we get

– 1 = A(– 2)(1) + B(1) + C(4)

∴ – 1 = `-2"A" + 1/3 - 8/9` 

∴ – 1 = `-2"A" - 5/9`

∴ 2A = `-5/9 + 1 = 4/9`

∴ A = `2/9`

∴ `x/((x - 1)^2(x + 2)) = (2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)`

∴ I = `int[(2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)] "d"x`

= `2/9 int 1/(x - 1) "d"x + 1/3int(x - 1)^(-2) "d"x - 2/9 int 1/(x + 2) "d"x`

= `2/9 log|x - 1| + 1/3*((x - 1)^(-1))/(-1) - 2/9 log|x + 2| + "c"`

= `2/9 log|x - 1| - 2/9 log|x + 2| - 1/3 xx 1/((x - 1)) + "c"`

∴ I = `2/9 log|(x - 1)/(x + 2)| - 1/(3(x - 1)) + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.5: Integration - Q.5

RELATED QUESTIONS

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int x sin2x cos5x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


`int 1/(x^2 + 1)^2 dx` = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×