Advertisements
Advertisements
Question
`int x/((x - 1)^2 (x + 2)) "d"x`
Solution
Let I = `int x/((x - 1)^2 (x + 2)) "d"x`
Let `x/((x - 1)^2 (x + 2)) = "A"/(x - 1) + "B"/(x - 1)^2 + "C"/((x + 2))`
∴ x = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)2 ......(i)
Putting x = 1 in (i), we get
1 = A(0)(3) + B(3) + C(0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = 2 in (i), we get
– 2 = A(– 3)(0) + B(0) + C(9)
∴ – 2 = 9C
∴ C = `-2/9`
Putting x = – 1 in (i), we get
– 1 = A(– 2)(1) + B(1) + C(4)
∴ – 1 = `-2"A" + 1/3 - 8/9`
∴ – 1 = `-2"A" - 5/9`
∴ 2A = `-5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `x/((x - 1)^2(x + 2)) = (2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)`
∴ I = `int[(2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)] "d"x`
= `2/9 int 1/(x - 1) "d"x + 1/3int(x - 1)^(-2) "d"x - 2/9 int 1/(x + 2) "d"x`
= `2/9 log|x - 1| + 1/3*((x - 1)^(-1))/(-1) - 2/9 log|x + 2| + "c"`
= `2/9 log|x - 1| - 2/9 log|x + 2| - 1/3 xx 1/((x - 1)) + "c"`
∴ I = `2/9 log|(x - 1)/(x + 2)| - 1/(3(x - 1)) + "c"`
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`