Advertisements
Advertisements
Question
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Options
True
False
Solution
True
Explanation:
Let I =`(("x - 1"))/(("x + 1")("x - 2"))` dx
Let `(("x - 1"))/(("x + 1")("x - 2")) = "A"/"x + 1" + "B"/"x - 2"`
∴ x - 1 = A(x - 2) + B(x + 1) ....(i)
Putting x = –1 in (i), we get
- 1 - 1 = A(- 1 - 2)
∴ - 2 = - 3A
∴ A = `2/3`
Putting x = 2 in (i), we get
2 - 1 = B(2 + 1)
∴ 1 = 3B
∴ B = `1/3`
∴ I = `int ((2/3)/("x + 1") + (1/3)/("x - 2"))` dx
`= 2/3 int 1/"x + 1" "dx" + 1/3 int 1/"x - 2"` dx
`= 2/3 log |"x + 1"| + 1/3 log |"x - 2"|` + c
Comparing the above with
A log |x + 1| + B log |x - 2| + c, we get
∴ A = `2/3, "B" = 1/3`
∴ A + B = `2/3 + 1/3 = 1`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate `int x log x "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`