Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
विकल्प
True
False
उत्तर
True
Explanation:
Let I =`(("x - 1"))/(("x + 1")("x - 2"))` dx
Let `(("x - 1"))/(("x + 1")("x - 2")) = "A"/"x + 1" + "B"/"x - 2"`
∴ x - 1 = A(x - 2) + B(x + 1) ....(i)
Putting x = –1 in (i), we get
- 1 - 1 = A(- 1 - 2)
∴ - 2 = - 3A
∴ A = `2/3`
Putting x = 2 in (i), we get
2 - 1 = B(2 + 1)
∴ 1 = 3B
∴ B = `1/3`
∴ I = `int ((2/3)/("x + 1") + (1/3)/("x - 2"))` dx
`= 2/3 int 1/"x + 1" "dx" + 1/3 int 1/"x - 2"` dx
`= 2/3 log |"x + 1"| + 1/3 log |"x - 2"|` + c
Comparing the above with
A log |x + 1| + B log |x - 2| + c, we get
∴ A = `2/3, "B" = 1/3`
∴ A + B = `2/3 + 1/3 = 1`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (sinx)/(sin3x) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`