Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`x/((x + 1)(x+ 2))`
उत्तर
Let `x/((x + 1)(x + 2)) = A/(x + 1) + B/(x + 2)`
`=> x/((x + 1)(x + 2)) = (A(x + 2) + B(x + 1))/((x + 1)(x + 2))`
Put x = -1
-1 = A (-1 + 2) ⇒ -1 = A
⇒ A = -1
Put x = -2
-2 = B (-2 + 1) ⇒ -2 = -B
⇒ B = 2
∴ `x/ ((x + 1) (x + 2)) = (-1)/ (x + 1) + 2/ (x + 2)`
∴ `I = int x/ ((x + 1) (x + 2)) dx`
`= int [(-1)/ (x + 1) + 2/ (x + 2)] dx`
`= int (-1)/ ((x + 1)) dx + int 2/ (x + 2) dx`
= - log |x + 1| + 2 log |x + 2| + C
= - log |x + 1| + log |x + 2|2 + C
`= log |((x + 2)^2)/(x + 1)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)