हिंदी

Integrate the rational function: 1x(xn+1) [Hint: multiply numerator and denominator by xn − 1 and put xn = t] - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]

योग

उत्तर

Let `I = int 1/(x (x^n + 1))` dx

`= int x^(n - 1)/(x^n (x^n + 1))` dx

Put xn = t

⇒ nxn -1 dx = dt

`therefore I = 1/n dt/(t (t + 1))`

Now, `1/(t(t + 1)) = A/t + B/(t + 1)`

∴ 1 = A(t + 1) + Bt

Putting t = 0, 1 = A

∴ A = 1

Putting t = -1, 1 = -1B

∴ B = -1

`therefore 1/(t(t + 1)) = 1/t - 1/(t + 1)`

`therefore I = 1/n  int dt/(t(t + 1)) = 1/n  int (1/t - 1/(t + 1))` dt

`= 1/n  log t - 1/n  log (t + 1) + C`

`= 1/n  [log t - log (t + 1)] + C`

`= 1/n  log abs (t/(t + 1)) + C`

`= 1/n   log abs ((x_n )/(x^n  + 1)) = C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.5 | Q 16 | पृष्ठ ३२२

संबंधित प्रश्न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int sin(logx)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int x log x  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×