Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
उत्तर
Let I = `int_"0"^pi (x"d"x)/(1 + sin x)` .....(i)
= `int_0^pi (pi - x)/(1 + sin(pi - x)) "d"x` ......`["Using" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^pi (pi - x)/(1 + sinx) "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^pi (x/(1 + sinx) + (pi - x)/(1 + sinx)) "d"x`
= `int_0^pi ((x + pi - x)/(1 + sinx))"d"x`
= `int_0^pi pi/(1 + sin x) "d"x`
= `pi int_0^pi 1/(1 + sinx) "d"x`
= `pi int_0^pi (1.(1 - sinx))/((1 + sinx)(1 - sinx)) "d"x`
= `pi int_0^pi (1 - sinx)/(1 - sin^2x) "d"x`
= `pi int_0^pi (1 - sinx)/(cos^x) "d"x`
= `pi int_0^pi (1/(cos^2x) - sinx/(cos^2x))"d"x`
= `pi int_0^pi (sec^2x - secx tanx)"d"x`
= `pi[tanx - sec]_0^pi`
= `pi[tan pi - tan 0) - (sec pi - sec 0)]`
2I = `pi[0 - (-1 - 1)`
= `pi`(2)
∴ I = `pi`
Hence, I = `pi`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int x^7/(1 + x^4)^2 "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (sinx)/(sin3x) "d"x`
`int x^3tan^(-1)x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int x log x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`