Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
उत्तर
Let `I = int (x^3 + x + 1)/(x^2 - 1) dx`
Since `(x^3 + x + 1)/(x^2 - 1)` is an improper fraction, we convert it into a proper fraction by long division method.
`x^2 - 1) overline (x^3 + x + 1)(x`
x3 - x
- +
2x + 1
`(x^3 + x + 1)/(x^2 -1) = Q + R/D`
∴ `(x^3 + x + 1)/(x^2 - 1) = x + (2x + 1)/(x^2 - 1)` ....(i)
Now,
`(2x + 1)/(x^2 - 1) = (2x + 1)/ ((x + 1)(x - 1))`
`= A/(x + 1) + B/(x - 1)`
⇒ 2x + 1 = A (x - 1) + B (x + 1) ....(ii)
Putting x = -1 in (ii), we get
-2 + 1 = A (-1-1)
⇒ `A = (-1)/-2 = 1/2`
Putting x = 1 in (ii), we get
2 + 1 = B (1 + 1)
⇒ `B = 3/2`
∴ `(2x + 1)/(x^2 - 1) = 1/(2 (x + 1)) + 3/ (2 (x - 1))` ....(iii)
From (i) and (iii),
`(x^3 + x + 1)/(x^2 - 1) = x + 1/ (2(x + 1)) + 3/ (2 (x - 1))`
∴ `int(x^3 + x + 1)/(x^2 - 1) dx`
`= int x dx + 1/2 int dx/ (x + 1) + 3/2 int dx/ (x - 1)`
`= x^2/2 + 1/2 log |x + 1| + 3/2 log |x - 1| + C`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int xcos^3x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`