Advertisements
Advertisements
प्रश्न
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
विकल्प
True
False
उत्तर
This statement is false.
Explanation:
Let I =`(("x" - 1))/(("x" + 1)^3) * "e"^"x"` dx
`= int "e"^"x" [(("x" + 1) - 2)/("x"+ 1)^3]` dx
`= int "e"^"x" [1/("x" + 1)^2 - 2/("x" + 1)^3]` dx
`= int "e"^"x" [("x" + 1)^-2 - 2("x" + 1)^-3]` dx
Put f(x) = (x + 1)-2
∴ f '(x) = − 2 (x + 1)−3
∴ I = `"e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x")` + c
`= "e"^"x" * ("x + 1")^-2` + c
∴ f(x) = (x + 1)−2
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^7/(1 + x^4)^2 "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`