Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`1/(x^4 - 1)`
उत्तर
Let `1/(x^4 - 1) = 1/((x + 1)(x - 1)(x^2 + 1))`
`= A/(x + 1) + B/(x - 1) + (Cx + D)/(x^2 + 1)`
1 ≡ A(x – 1) (x2 + 1) + B(x + 1) (x2 + 1) + (Cx + D) (x + 1) (x – 1) …(1)
Putting x = -1 in equation (1),
1 = A (-1 – 1) (1 + 1)
⇒ 1 = A (-4)
⇒ A = `-1/4`
Putting x = 1 in equation (1),
1 = B (1 + 1) (1 + 1)
⇒ 1= B (2) (2)
⇒ B = `1/4`
Comparing the coefficients of x3 in equation (1),
0 = A + B + C
`=> 0 = (-1)/4 + 1/4 + C`
⇒ C = 0
1 = -A + B - D
`=> 1 = 1/4 + 1/4 - D`
⇒ ` D = -1/2`
`therefore 1/(x^4 - 1) = - 1/(4(x + 1)) + 1/(4(x - 1)) - 1/(2 (x^2 + 1))`
`therefore int dx/(x^4 - 1) = 1/4 int 1/(x + 1) dx + 1/4 int 1/(x - 1) dx - 1/2 int 1/(x^2 + 1) dx`
`= - 1/4 log (x + 1) = 1/4 log (x - 1) -1/2 tan^-1 x + C`
`= 1/4 log ((x - 1)/(x + 1)) - 1/2 tan^-1 x + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`