Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`1/(x^4 - 1)`
उत्तर
Let `1/(x^4 - 1) = 1/((x + 1)(x - 1)(x^2 + 1))`
`= A/(x + 1) + B/(x - 1) + (Cx + D)/(x^2 + 1)`
1 ≡ A(x – 1) (x2 + 1) + B(x + 1) (x2 + 1) + (Cx + D) (x + 1) (x – 1) …(1)
Putting x = -1 in equation (1),
1 = A (-1 – 1) (1 + 1)
⇒ 1 = A (-4)
⇒ A = `-1/4`
Putting x = 1 in equation (1),
1 = B (1 + 1) (1 + 1)
⇒ 1= B (2) (2)
⇒ B = `1/4`
Comparing the coefficients of x3 in equation (1),
0 = A + B + C
`=> 0 = (-1)/4 + 1/4 + C`
⇒ C = 0
1 = -A + B - D
`=> 1 = 1/4 + 1/4 - D`
⇒ ` D = -1/2`
`therefore 1/(x^4 - 1) = - 1/(4(x + 1)) + 1/(4(x - 1)) - 1/(2 (x^2 + 1))`
`therefore int dx/(x^4 - 1) = 1/4 int 1/(x + 1) dx + 1/4 int 1/(x - 1) dx - 1/2 int 1/(x^2 + 1) dx`
`= - 1/4 log (x + 1) = 1/4 log (x - 1) -1/2 tan^-1 x + C`
`= 1/4 log ((x - 1)/(x + 1)) - 1/2 tan^-1 x + C`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int x sin2x cos5x "d"x`
`int ("d"x)/(x^3 - 1)`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int x log x "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`