Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
उत्तर
Let I = `int 1/("x"("x"^"n" + 1))` dx
∴ I = `int "x"^"n - 1"/("x"^"n - 1" xx "x"("x"^"n" + 1))` dx
∴ I = `int "x"^"n - 1"/("x"^"n" ("x"^"n" + 1))` dx
Put xn = t
∴ `"n""x"^"n - 1" "dx" = "dt"`
∴ `"x"^"n - 1" "dx" = "dt"/"n"`
∴ I = `int 1/("t"("t + 1")) * "dt"/"n"`
Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`
∴ 1 = A(t + 1) + Bt ....(i)
Putting t = –1 in (i), we get
1 = A(0) + B(- 1)
∴ 1 = - B
∴ B = - 1
Putting t = 0 in (i), we get
1 = A(1) + B(0)
∴ A = 1
∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`
∴ I = `1/"n" int (1/"t" + (-1)/"t + 1")` dt
`= 1/"n" [int 1/"t" "dt" - int 1/("t + 1") "dt"]`
`= 1/"n" [log |"t"| - log |"t" + 1|]` + c
`= 1/"n" log |"t"/"t + 1"|` + c
∴ I = `1/"n" log |"x"^"n"/("x"^"n" + 1)|` + c
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
`int ("d"x)/(2 + 3tanx)`
`int xcos^3x "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`