Advertisements
Advertisements
प्रश्न
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
उत्तर
Let I = `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x"^2 + 2"x" + 1))` dx
`= int (5"x"^2 + 20"x" + 6)/("x"("x + 1")^2)` dx
Let `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = "A"/"x" + "B"/"x + 1" + "C"/("x + 1")^2`
∴ 5x2 + 20x + 6 = A(x + 1)2 + B(x + 1)x + Cx ...(i)
Putting x = 0 in (i), we get
5(0) + 20(0) + 6 = A(1)2 + B(1)(0) + C(0)
∴ A = 6
Putting x = - 1 in (i), we get
5 (1) + 20(- 1) + 6 = A (0)+ B (0) (- 1) + C (-1)
∴ - 9 = - C
∴ C = 9
Putting x = 1 in (i), we get
5 (1) + 20 (1) + 6 = A (2)2 + B (2) (1) + C (1)
∴ 31 = 4A + 2B + C
∴ 31 = 4(6) + 2B + 9
∴ B = - 1
∴ `(5"x"^2 + 20"x" + 6)/("x"("x + 1")^2) = 6/"x" + (-1)/"x + 1" + 9/("x + 1")^2`
∴ I = `int [6/"x" + (- 1)/"x + 1" + 9/("x + 1")^2]` dx
`= 6 int 1/"x" "dx" - int 1/"x + 1" "dx" + 9 int ("x + 1")^-2` dx
`= 6 log |"x"| - log |"x + 1"| + 9("x + 1")^-1/(-1)` + c
∴ I = `6 log |"x"| - log |"x + 1"| - 9/("x + 1")` + c
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int ("d"x)/(x^3 - 1)`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate: `int (dx)/(2 + cos x - sin x)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`