Advertisements
Advertisements
प्रश्न
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
उत्तर
Let I = `int "x"/(("x - 1")^2("x + 2"))` dx
Let `"x"/(("x - 1")^2("x + 2")) = "A"/"x - 1" + "B"/("x - 1")^2 + "C"/("x + 2")`
∴ x = A (x - 1) (x + 2) + B (x + 2) + C (x - 1)2 ....(i)
Putting x = 1 in (i), we get
1 = A (0) (3) + B (3) + C (0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = -2 in (i), we get
- 2 = A(- 3) (0) + B (0) + C (9)
∴ - 2 = 9C
∴ C = - `2/9`
Putting x = - 1 in (i), we get
- 1 = A(- 2) (1) + B (1) + C (4)
∴ - 1 = - 2A +`1/3 - 8/9 `
∴ - 1 = - 2A `- 5/9`
∴ 2A = `- 5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `"x"/(("x - 1")^2("x + 2")) = (2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"`
∴ I = `int [(2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"]` dx
`= 2/9 int 1/"x - 1" "dx" + 1/3int ("x - 1")^-2 "dx" - 2/9 int 1/"x + 2" "dx"`
`= 2/9 log |"x - 1"| + 1/3 * ("x - 1")^-1/-1 - 2/9 log |"x + 2"|` + c
`= 2/9 log |"x - 1"| - 2/9 log |"x + 2"| - 1/3 xx 1/("x - 1") + "c"`
∴ I = `2/9 log |("x - 1")/("x + 2")| - 1/(3("x - 1"))` + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
`int "dx"/(("x" - 8)("x" + 7))`=
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sec^3x "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`