Advertisements
Advertisements
प्रश्न
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
उत्तर
Let I = `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Let `"3x - 2"/(("x + 1")^2("x + 3")) = "A"/"x + 1" + "B"/("x + 1")^2 + "C"/("x + 3")`
∴ 3x - 2 = (x + 3) [A(x + 1) + B] + C(x + 1)2 ....(i)
Putting x = - 1 in (i), we get
3(- 1) - 2 = (–1 + 3)[A(0) + B] + C(0)
∴ - 5 = 2B
∴ B = -`5/2`
Putting x = - 3 in (i), we get
3(- 3)-2 = 0[A(–3 + 1) + B] + C(–2)2
∴ - 11 = 4C
∴ C = - `11/4`
Putting x = 0 in (i), we get
3(0)- 2 = 3[A(0 + 1) + B] + C(0 + 1)2
∴ - 2 = 3A + 3B + C
∴ - 2 = 3A + 3`(- 5/2) - 11/4`
∴ 3A = –2 + `15/2 + 11/4 = (- 8 + 30 11)/4 = 33/4`
∴ A = `33/4 xx 1/3 = 11/4`
∴ `"3x - 2"/(("x + 1")^2("x + 3")) = (11/4)/"x + 1" + (- 5/2)/("x + 1")^2 + (- 11/4)/"x + 3"`
∴ I = `int ((11/4)/"x + 1" - (5/2)/("x + 1")^2 - ( 11/4)/"x + 3")` dx
`= 11/4 int "dx"/"x + 1" - 5/2 int ("x + 1")^-2 "dx" - 11/4 int "dx"/"x + 3"`
`= 11/4 log |"x + 1"| - 5/2 (- 1/"x + 1") - 11/4 log |"x + 3"|` + c
`= 11/4 [log |"x" + 1| - log |"x" + 3|] + 5/(2("x" + 1))` + c
∴ I = `11/4 log |("x + 1")/("x + 3")| + 5/(2("x + 1"))` + c
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.