Advertisements
Advertisements
प्रश्न
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
पर्याय
a = `(-1)/10`, b = `(-2)/5`
a = `1/10`, b = `- 2/5`
a = `(-1)/10`, b = `2/5`
a = `1/10`, b = `2/5`
उत्तर
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then a = `(-1)/10`, b = `2/5`.
Explanation:
Given that, `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`
Now, I = `int "dx"/((x + 2)(x^2 + 1))`
`1/((x + 2)(x^2 + 1)) = "A"/(x + 2) + ("B"x + "C")/(x^2 + 1)`
⇒ 1 = A(x2 + 1) + (Bx + C)(x + 2)
⇒ 1 = (A + B)x2 + (2B + C)x + A + 2C
Comapring coefficient, we get
A + B = 0
A + 2C = 1
2B + C = 0
Solving we get A = `1/5`
B = `- 1/5`
And C = `2/5`
∴ `int "dx"/((x + 2)(x^2 + 1))`
= `1/5 int 1/(x + 2) "d"x + int (- 1/5 + 2/5)/(x^2 + 1) "d"x`
= `1/5 int 1/(x + 2) "d"x - 1/10 int (2x)/(1 + x^2) "d"x + 1/5 int 2/(1 + x^2) "d"x`
= `1/5 log|x + 2| - 1/10 log|1 + x^2| + 2/5 tan^-1x + "C"`
= `"a" log |1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"` ....(Given)
∴ a = `(-1)/10`, b = `2/5`.
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`