मराठी

If dxabC∫dx(x+2)(x2+1)=alog|1+x2|+btan-1x+15log|x+2|+C, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.

पर्याय

  • a = `(-1)/10`, b = `(-2)/5` 

  • a = `1/10`, b = `- 2/5`

  • a = `(-1)/10`, b = `2/5`

  • a = `1/10`, b = `2/5`

MCQ
रिकाम्या जागा भरा

उत्तर

If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then a = `(-1)/10`, b = `2/5`.

Explanation:

Given that, `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`

Now, I = `int "dx"/((x + 2)(x^2 + 1))`

`1/((x + 2)(x^2 + 1)) = "A"/(x + 2) + ("B"x + "C")/(x^2 + 1)`

⇒ 1 = A(x2 + 1) + (Bx + C)(x + 2)

⇒ 1 = (A + B)x2 + (2B + C)x + A + 2C

Comapring coefficient, we get

A + B = 0

A + 2C = 1

2B + C = 0

Solving we get A = `1/5`

B = `- 1/5`

And C = `2/5`

∴ `int "dx"/((x + 2)(x^2 + 1))`

= `1/5 int 1/(x + 2) "d"x + int (- 1/5 + 2/5)/(x^2 + 1) "d"x`

= `1/5 int 1/(x + 2) "d"x - 1/10 int (2x)/(1 + x^2) "d"x + 1/5 int 2/(1 + x^2) "d"x`

= `1/5 log|x + 2| - 1/10 log|1 + x^2| + 2/5 tan^-1x + "C"`

= `"a" log |1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`  ....(Given)

∴ a = `(-1)/10`, b = `2/5`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 53 | पृष्ठ १६८

संबंधित प्रश्‍न

Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int ("d"x)/(x^3 - 1)`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×