Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
उत्तर
Let `(2x)/(x^2 + 3x + 2) = (2x)/((x + 1)(x + 2)`
`= A/(x + 1) + B/(x + 2)`
⇒ 2x = A(x + 2) = B (x + 1) ... (1)
Putting x = -1 in equation (1),
2(-1) = A (-1 + 2)
⇒ -2 = A
∴ A = -2
Putting x = -2 in equation (1),
2(-2) = B (-2 + 1)
⇒ B = 4
`therefore (2x)/(x^2 + 3x + 2) = (-2)/(x + 1) + 4/(x + 4)`
`therefore int (2x)/(x^2 + 3x + 2) dx`
`= -2 int dx /(x + 1) + 4 int dx /(x + 2)`
`= -2 log abs (x + 1) + 4 log abs (x + 2) + C`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int (sinx)/(sin3x) "d"x`
`int sec^3x "d"x`
`int sin(logx) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`