Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
उत्तर
`(5x)/((x + 1)(x^2 - 4))`
`= 5/((x + 1)(x + 2)(x - 2))`
`(5x)/((x + 1)(x^2 - 4)) => A/(x + 1) + B/(x + 2) + C/(x - 2)`
⇒ 5x = A(x2 - 4) + B (x + 1)(x - 2) + C(x + 1)(x + 2)
Put x = -1
-5 = -3A + 0 = 0
⇒ A `= 5/3`
Put x = -2
-10 = 0 + B(-1)(-4) + 0
⇒ B `= (-5)/2`
Put x = 2
10 = 0 + 0 + 12C
⇒ C `= 5/6`
`therefore int (5x)/((x + 1)(x^2 - 4)`
`= 5/3 int 1/(x + 1) dx - 5/2 int 1/(x + 1) dx + 5/6 int 1/(x - 2) dx`
`= 5/3 log abs (x + 1) - 5/2 log abs (x + 1) + 5/6 log abs (x - 2) + C`
APPEARS IN
संबंधित प्रश्न
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int sqrt(4^x(4^x + 4)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int sec^3x "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate `int x log x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`