Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
उत्तर
Let I = `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Let `(2"x" + 1)/("x"("x - 1")("x - 4")) = "A"/"x" + "B"/"x - 1" + "C"/"x - 4"`
∴ 2x + 1 = A(x - 1)(x - 4) + Bx(x - 4) + Cx(x - 1) ....(i)
Putting x = 0 in (i), we get
0 + 1 = A(0 - 1)(0 - 4) + B(0)(- 4) + C(0)(- 1)
∴ 1 = 4A
∴ A = `1/4`
Putting x = 1 in (i), we get
2(1) + 1 = A(0)(-3) + B(1)(1 - 4) + C(1)(0)
∴ 3 = - 3B
∴ B = - 1
Putting x = 4 in (i), we get
2(4) + 1 = A(3)(0) + B(4)(0) + C(4)(4 - 1)
∴ 9 = C(4)(3)
∴ C = `3/4`
∴ `(2"x" + 1)/("x"("x - 1")("x - 4")) = (1/4)/"x" + (-1)/"x - 1" + (3/4)/"x - 4"`
∴ I = `int((1/4)/"x" + (-1)/("x - 1") + (3/4)/("x - 4"))` dx
`= 1/4 int 1/"x" "dx" - int 1/("x - 1") "dx" + 3/4 int 1/("x - 4")` dx
∴ I = `1/4 log |"x"| - log |"x - 1"| + 3/4 log |"x - 4"| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
`int "dx"/(("x" - 8)("x" + 7))`=
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`