Advertisements
Advertisements
Question
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Solution
Let I = `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Let `(2"x" + 1)/("x"("x - 1")("x - 4")) = "A"/"x" + "B"/"x - 1" + "C"/"x - 4"`
∴ 2x + 1 = A(x - 1)(x - 4) + Bx(x - 4) + Cx(x - 1) ....(i)
Putting x = 0 in (i), we get
0 + 1 = A(0 - 1)(0 - 4) + B(0)(- 4) + C(0)(- 1)
∴ 1 = 4A
∴ A = `1/4`
Putting x = 1 in (i), we get
2(1) + 1 = A(0)(-3) + B(1)(1 - 4) + C(1)(0)
∴ 3 = - 3B
∴ B = - 1
Putting x = 4 in (i), we get
2(4) + 1 = A(3)(0) + B(4)(0) + C(4)(4 - 1)
∴ 9 = C(4)(3)
∴ C = `3/4`
∴ `(2"x" + 1)/("x"("x - 1")("x - 4")) = (1/4)/"x" + (-1)/"x - 1" + (3/4)/"x - 4"`
∴ I = `int((1/4)/"x" + (-1)/("x - 1") + (3/4)/("x - 4"))` dx
`= 1/4 int 1/"x" "dx" - int 1/("x - 1") "dx" + 3/4 int 1/("x - 4")` dx
∴ I = `1/4 log |"x"| - log |"x - 1"| + 3/4 log |"x - 4"| + "c"`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^2sqrt("a"^2 - x^6) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sec^3x "d"x`
Evaluate `int x log x "d"x`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`